A Novel Electrochemical Method for the Preparation of Triangular and Cubic Molybdenum Clusters as Aqua lons

Poopathy Kathirgamanathan, Manuel Martinez, and A. Geoffrey Sykes*

Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU, U.K.

Aqua ions of $Mo_3S_4^{4+}$ and $Mo_4S_4^{5+}$ have been obtained in high yield in a single electrochemical experiment, which is applicable also to the preparation of $Mo_3O_4^{4+}$ and $Mo_4O_4^{5+}$ and other analogous clusters.

The synthesis of cubic Fe_4S_4 cluster complexes¹ as analogues of the biologically important ferredoxins,² of complexes containing two Fe_3MoS_4 cubes linked by bridging ligands,³ and more recently of the single $MoFe_3S_4$ cube,⁴ believed to be relevant in the nitrogenase context,⁵ has attracted much attention. No aqua ions of Fe_4S_4 have been prepared, and the few water-soluble Fe_4S_4 complexes which have been reported⁶ are not noted for their stability except over a very limited range of pH.

It is now clear that the aqueous solution chemistry of early transition metal ions such as Mo is dominated by structures having more than one metal,⁷ many with metal-metal bonds.⁸ Here we report an electrochemical method for the preparation of the $Mo_3S_4^{4+}$ and $Mo_4S_4^{5+}$ clusters as aqua ions. The procedure involves reduction of the Mo^V complex sodium di- μ -sulphido-bis[1-cysteinato-oxomolybdate(v)], $Na_2[Mo_2-S_2O_2(cyst)_2] \cdot 3H_2O$ (3 g),^{9–11} in 2 \bowtie HCl (100 ml), under N_2

Figure 1. U.v.-visible spectra of $[Mo_3S_4(H_2O)_9]^{4+}$ (A) and $[Mo_4S_4(H_2O)_{12}]^{5+}$ (B) in aqueous acidic solutions, [HPTS] = 2.0 M. On reaction of the 5+ complex with edta the complex $[Mo_4S_4(edta)_2]^{3-}$ (C) is obtained.

(or Ar) using a Hg pool electrode at a constant potential (0.85 V vs. normal hydrogen electrode, n.h.e.) for 12 h.⁺ The dark brown solution obtained was diluted to $[H^+] = 0.3 \text{ M}$, and 21 of 0.5 M toluene-*p*-sulphonic acid (HPTS) added. After being left in air for 24 h the solution was loaded onto a Dowex 50W-X2 column, and washed with 0.5 M (250 ml) and then 1.0 M (200 ml) HPTS. A dark-green band (~60% of Mo used) was eluted with 2 M HPTS, and a leaf-green band (~30% of Mo) with 3 M HPTS. Both bands were further purified by recolumning.

The dark-green 2 M eluate gave a solid crystalline sample of the tetramethylammonium salt of the thiocyanato complex, $(Me_4N)_5[Mo_3S_4(NCS)_9]$; satisfactory elemental analyses were obtained [no H₂O of crystallization (over P₂O₅)]. The u.v.-visible spectrum of the aqua ion, $[Mo_3S_4(H_2O)_9]^{4+}$, gave a peak with λ_{max} at 585 nm (ϵ 221 m⁻¹ cm^{-1†} per Mo) and 326 (2620) in excellent agreement with values already obtained for the same product from the reaction of $[Mo_2S_2O_2(cyst)_2]^{2-}$ with NaBH₄.¹² In 2 M HClO₄ the Mo₃S₄⁴⁺ ion decomposes to give μ_2 -oxo analogue complexes Mo₃O₂S₂⁴⁺ and Mo₃OS₃⁴⁺ which have not previously been reported.

The leaf-green product obtained in the same electrochemical experiment has been characterised as the mixed-valence $Mo_{III_3}Mo_{IV}$ cluster $[Mo_4S_4(H_2O)_{12}]^{5+}$, λ_{max} at 645 nm (ε 470 m⁻¹ cm⁻¹). A thiocyanato complex has been isolated, $(Me_4N)_7[Mo_4S_4(NCS)_{12}]$, which gave satisfactory elemental of analyses; no H_2O . On addition disodium ethylenediamminetetra-acetate (edta) to the aqua ion a solid sample of Na₃[Mo₄S₄(edta)₂], $\lambda_{max.}$ at 636 nm (ϵ 632 m⁻¹ cm⁻¹) was obtained, Figure 1. The crystal structure of $Ca_3[Mo_4S_4(edta)_2] \cdot 26H_2O$, has been determined.¹³ Addition of 3 M HPTS to the edta complex gives complex spectrophotometric changes and the edta cannot be removed by this means to generate the aqua ion. Crystal structures of $K_8[Mo_4S_4(CN)_{12}] \cdot 4H_2O$ and $K_8[Mo_4S_4(NO)_4(CN)_8] \cdot 4H_2O$ have been reported.14,15

Analogous electrochemical experiments using the di- μ -oxo Mo^V complex Na₂[Mo₂O₄(cyst)₂] · 5H₂O have furthermore yielded red products of Mo₃O₄⁴⁺ (~20% of the Mo), λ_{max} . 505 nm (ϵ 195 M⁻¹ cm⁻¹), and Mo₄O₄⁵⁺ (~3%), λ_{max} . 400 nm (2740 M⁻¹ cm⁻¹) and 545 (200). Whereas the [Mo₃O₄(H₂O)₉]⁴⁺ ion is now well characterised, ¹⁶ the Mo₄O₄⁵⁺ cluster has not previously been identified. Determinations of the Mo by atomic absorption and redox equivalents by titration with Ce^{IV} have indicated that the latter has mixed oxidation states corresponding to Mo^{III}₃Mo^{IV}.

Factors controlling the relative amounts of the triangular and cubic complexes and whether the Mo₄ cluster is the precursor of Mo₃ or vice versa are of interest. The two cubic aqua ions prepared for the first time are remarkably stable, with little decomposition (~10%) of Mo₄S₄⁵⁺ and Mo₄O₄⁵⁺ in [H⁺] = 0.10-3.0 M over 1 week at 20 °C. They are also unreactive in 1 M HClO₄ solutions over the same time, and stable up to 60 °C on heating at a rate of 20 °C per hour. Kinetic studies on the substitution of H₂O by NCS⁻ (0.5 mM) required the stopped flow method (t_1 ca. 1 s). Other ligating

[†] $M = mol dm^{-3}$; all ε values are per mole complex.

groups can readily be attached to the aqua ion clusters in aqueous media.

Cyclic voltammetry on the $Mo_3S_4^{4+}$ ion in 2 M HPTS has indicated a 2 electron and a further 1 electron reduction processes. Experiments on the aqua ion $Mo_4S_4^{5+}$ in 2 M HPTS have indicated 1 electron oxidation and reduction processes with E° values of -0.08 V corresponding to the 5+/4+ change, and +0.54 V for the 6+/5+ change (vs. n.h.e.). For the $Mo_4O_4^{5+}$ ion an E° of 0.67 V has been observed for the 6+/5+ change.

The preparative method used is likely to have wider applications for other triangular and cubic molybdenum clusters, and for other early second and third row transition metals. We are currently investigating the chemistry of tungsten and niobium by this method.

Received, 9th April 1985; Com. 470

References

- R. H. Holm and J. H. Ibers, in 'Iron-Sulphur Proteins,' vol. III, ed. W. Lovenberg, Academic Press, New York and London, 1977, pp. 205—281; J. A. Ibers and R. H. Holm, *Science*, 1980, 209, 223.
- 2 W. Lovenberg, ed., 'Iron-Sulphur Proteins,' vols. I—III, Academic Press, New York and London, 1973—1977.

- 3 G. Christou, C. D. Garner, F. E. Mabbs, and T. J. King, J. Chem. Soc., Chem. Commun., 1978, 740.
- 4 W. H. Armstrong, P. K. Mascharaka, and R. H. Holm, *Inorg. Chem.*, 1982, 21, 1669.
- 5 L. E. Mortenson and R. N. F. Thorneley, Annu. Rev. Biochem., 1975, 48, 387; P. T. Prenkos, V. K. Shah, and W. J. Brill in 'Molybdenum and Molybdenum Containing Enzymes,' ed. M. P. Coughlan, Pergamon Press, New York, 1980, p. 385; W. H. Orme-Johnson and E. Munck, *ibid.*, p. 427.
- 6 R. A. Henderson and A. G. Sykes, Inorg. Chem., 1980, 19, 3103.
- 7 D. T. Richens and A. G. Sykes, *Comments Inorg. Chem.*, 1981, 1, 141.
- 8 A. Müller, R. Jostes, and F. A. Cotton, Angew. Chem., Int. Ed. Engl., 1980, 19, 875.
- 9 A. Kay and P. C. H. Mitchell, J. Chem. Soc. A, 1970, 2421.
- 10 B. Spivack and Z. Dori, Chem. Commun., 1970, 1716.
- 11 F. A. Armstrong, T. Shibahara, and A. G. Sykes, *Inorg. Chem.*, 1978, 17, 189.
- 12 T. Shibahara and H. Kuroya, to be published.
- 13 T. Shibahara, H. Kuroya, K. Matsumoto, and S. Ooi, J. Am. Chem. Soc., 1984, 106, 789.
- 14 A. Müller, W. Eltzner, H. Bogge, and R. Jostes, Angew. Chem., Int. Ed. Engl., 1982, 21, 795.
- 15 A. Müller, W. Eltzner, W. Clegg, and G. M. Scheldrick, Angew. Chem., Int. Ed. Engl., 1982, 21, 536.
- 16 R. K. Murmann and M. E. Shelton, J. Am. Chem. Soc., 1980, 102, 3984.